domain registration   |   faq  |   order  |   network  |   terms  |   support   |   home  |  


        

Our Network Operations is managed out of LA, California.

Features

  • Redundant uninterruptible power supplies,

  • Multiple redundant back-up generators,

  • Fire suppression,

  • Raised floors,

  • HVAC,

  • Separate cooling zones,

  • Humidity control,

  • Multiple levels of security.

Connectivity:

  • multi-homed gigabit connectivity with gigabit connections

Customers connect to 4 Cisco 6509 routers

These routers have multiple connections to our backbone routers. Backbone routers are Junipers with multiple connections to our backbone OCn's.

The backbone is a Tier 1 backbone. Here is a link to the network map:
 Domestic Comunications Map

The data center has connections to many different Internet backbones including Level 3, Williams, Global Crossing, YIPES, and XO.

By connecting to multiple backbones, the data can be distributed through many sources. This architectural design also means that the network connections are not dependent upon any single Internet backbone. Thus when problems occur, traffic rerouting is automatic, thereby ensuring the integrity of the network and continued access for our high-speed dedicated server clients. This takes the term "multi-homing" to a whole new level.

Presently bandwidth utilization is 25% during peak traffic times. Therefore, the network is very flexible. If one of the backbone connections experiences problems, the traffic can simply be re-routed over other paths, thereby ensuring that users receive fast access times to sites hosted on our network.

In addition, the network runs Border Gate Protocol (BGP4). BGP is used at a provider with more than one access point to the Internet. It helps create a truly redundant network. In fact, in an ideal situation, a lease line failure should result in the BGP routing session to close on the bad leased line and the router on a working circuit should then begin to accept the additional traffic.

In other words, traffic from a down circuit is re-distributed across other circuits, thereby maintaining network integrity. Providers that are multi-homed and correctly setup can actually be more reliable than a single backbone provider because they have multiple paths to multiple providers.

Internal Connectivity

A provider's local area network is not often enough being seen as a point of latency. The two main sources of latency for a full-time Internet connection are the user's local area network and the Internet provider's local area network. The local network is anchored by Cisco 5500 Series ether switches and high-end Cisco routers (like a Cisco 7513). This top-of-the-line network hardware ensures that data requests get to their destination and back out of the network as fast as possible. We use ether switches instead of hubs because of their speed and their security capabilities. Whereas only one computer plugged into a hub can talk at one time, all the machines connected to a switch can talk at the same time. This means more data can travel through a switch and each server acts as its own node on the network. Furthermore, since each server is its own node on the network, it is difficult for hackers to trace data packets with sensitive information (i.e. passwords) to a particular server.

Servers on the network do not share a single path (T3). Instead, the servers are connected into a high-speed ethernet switch. This switch is connected to the core router at the data center. From the core router, data is sent back to the end user across the fastest available path. Whereas statically routing traffic over one path creates a single point of failure, this distributed architecture ensures that users can access data extremely quickly and have multiple paths both into and out of our network.

 

Web design 2001 Bluetech Solutions All Rights reserved

 

NETWORK